References

Bauer, R. A., Robinson, W. R. \& Margerum, D. W. (1973). J. Chem. Soc. Chem. Commun. pp. 289-290.
Clegg, W. (1996). Cell Refinement Program for the Siemens SMART $C C D$ Diffractometer. University of Newcastle, England.
Comba, P., Curtis, N. F., Lawrance, G. A., O’Leary, M. A., Skelton, B. W. \& White, A. H. (1988). J. Chem. Soc. Dalton Trans. pp. 497-502.
Domiano, P., Musatti, A. \& Pelizzi, C. (1975). Cryst. Struct. Commun. 4, 185-188.
Fawcett, T. G., Rudich, S. M., Toby, B. H., Lalancette, R. A., Potenza, J. A. \& Schugar, H. J. (1980). Inorg. Chem. 19, 940-945.

Gladkikh, O. P. \& Curtis, N. F. (1997). Acta Cryst. Submitted.
Gladkikh, O. P., Curtis, N. F. \& Heath, S. L. (1997). Acta Cryst. Submitted.
Gladkikh, O. P., Curtis, N. F. \& Turnbull, M. M. (1997). Acta Cryst. Submitted.
Hanic, F. \& Machajdik, D. (1969). Chem. Zvesti, 23, 3-11.
Hanic, F., Pavelcik, F. \& Gyepesova, D. (1972). Krystallografiya, 17, 10-14.
Hanic, F. \& Serator, M. (1964). Chem. Zvesti, 18, 572-583.
Morgan, K. R. \& Curtis, N. F. (1980). Aust. J. Chem. 33, 1231-1239.
Morgan, K. R., Martin, J. W. L. \& Curtis, N. F. (1979). Aust. J. Chem. 32, 2371-2380.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1994). SHELXTLIPC. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1995). SMART and SAINT. Area Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Zsolnai, L. (1994). XPMA. Program for Molecular Graphics. University of Heidelburg, Germany.

Acta Cryst. (1997). C53, 200-202

Bis(piperazinium) Pentakis(trioxomolybdo)bis(ethylphosphonate) Dihydrate

William T. A. Harrison, ${ }^{a}$ Laurie L. Dussack ${ }^{b}$ and Allan J. Jacobson ${ }^{b}$
${ }^{a}$ Department of Chemistry, University of Western Australia, Nedlands, WA 6907, Australia, and ${ }^{b}$ Department of Chemistry, University of Houston, Houston, TX 77204-5641, USA. E-mail: wtah@chem.uwa.edu.au

(Received 25 July 1996; accepted 27 September 1996)

Abstract

The title compound, bis(piperazine-1,4-diylium) bis(ethylphosphonato) $-1 \kappa O, 2: 3 \kappa^{2} O^{\prime}, 4: 5 \kappa^{2} O^{\prime \prime} ; 1: 2 \kappa^{2} O$,$3: 4 \kappa^{2} O^{\prime}, 5 \kappa O^{\prime \prime}$-penta- μ-oxo-1:2 $2 \kappa^{2} O ; 1: 5 \kappa^{2} O ; 2: 3 \kappa^{2} O ; 3: 4 \kappa^{2}$ $O ; 4: 5 \kappa^{2} O$-decaoxo- $1 \kappa^{2} O, 2 \kappa^{2} O, 3 \kappa^{2} O, 4 \kappa^{2} O, 5 \kappa^{2} O$-penta-molybdenum(4-) dihydrate, $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{Mo}_{5} \mathrm{O}_{15}\left(\mathrm{C}_{2} \mathrm{H}_{5}-\right.\right.$ $\left.\left.\mathrm{O}_{3} \mathrm{P}\right)_{2}\right] .2 \mathrm{H}_{2} \mathrm{O}$, crystallizes as isolated five-unit rings of vertex- and edge-sharing distorted-octahedral MoO_{6} groups, doubly capped by $\mathrm{PC}_{2} \mathrm{H}_{5}$ entities $\left\{\right.$ as $\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\right.$ -$\left.\mathrm{PO}_{3}\right]^{2-}$ ethylphosphonate groups $\}$, resulting in $\left[\left(\mathrm{MoO}_{3}\right)_{5^{-}}\right.$ $\left.\left\{\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{PO}_{3}\right\}_{2}\right]^{4-}\left\{\right.$ or $\left.\left[\mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{21}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right]^{4-}\right\}$ anions.

Doubly protonated piperazinium cations and water molecules complete the structure. This phase shows reversible dehydration/rehydration without loss of structure.

Comment

We have recently reported the hydrothermal syntheses and structures of a family of novel layered alkali metal/ammonium molybdenum methylphosphonates (Harrison, Dussack \& Jacobson, 1995), which are based on the hexagonal tungsten oxide (HTO) motif of vertex-sharing octahedra (Gérand, Nowogrocki, Guenot \& Figlarz, 1979). We report here the preparation and characterization of $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{2}\left[\left(\mathrm{MoO}_{3}\right)_{5}\left\{\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{PO}_{3}\right\}_{2}\right]$.$2 \mathrm{H}_{2} \mathrm{O}$, (I), a molecular species prepared under similar conditions from closely related starting materials. It is related to similar clusters prepared earlier (Kwak, Pope \& Scully, 1975; Stalick \& Quicksall, 1976; Kortz \& Pope, 1995).

(I)

The five crystallographically distinct Mo atoms in the pentamolybdodi(ethylphosphonate) cluster (Fig. 1) are all octahedrally coordinated by O atoms. All the Mo centers show the two short, two intermediate and two long $\mathrm{Mo}-\mathrm{O}$ bond-distance distribution within the distorted MoO_{6} unit which is characteristic of $\mathrm{Mo}^{\mathrm{VI}}$. Each MoO_{6} center has two short ($d<1.73 \AA$) 'oxo' $\mathrm{Mo}=\mathrm{O}$ bonds in a cis configuration $\left[\theta_{\text {ave }}(\mathrm{O}=\mathrm{Mo}=\mathrm{O})=\right.$ 103.3°]. These short bonds are both trans with respect to a long ($d>2.18 \AA$) Mo-O link, and the two remaining Mo- O bonds are intermediate in length between these two extremes. All the $\mathrm{Mo}=\mathrm{O}$ links are terminal bonds, not joined to any other atoms in the cluster [three of them (O6, O13 and O14) form hydro-gen-bonding links to the piperazinium dications]. These five octahedral MoO_{6} units are fused together into an isolated ring. There are four edge-sharing links (MolMo2, Mo2-Mo3, Mo4-Mo5 and Mo5-Mo1) and one vertex-sharing connection (Mo3-Mo4). Average MoO bond lengths and molybdenum bond-valence sum (BVS) values (Brese \& O'Keeffe, 1991) are typical for $\mathrm{Mo}^{\mathrm{VI}}$ (expected BVS $\left.=6.00\right)$: $d_{\mathrm{ave}}(\mathrm{Mol}-$ $\mathrm{O})=1.985(2) \AA, \mathrm{BVS}(\mathrm{Mol})=6.02 ; d_{\mathrm{ave}}(\mathrm{Mo} 2-\mathrm{O})=$ $1.983(2) \AA, \quad \mathrm{BVS}(\mathrm{Mo} 2)=6.02 ; \quad d_{\text {ave }}(\mathrm{Mo} 3-\mathrm{O})=$ $1.977(2) \AA, \quad B V S(M o 3)=6.01 ; \quad d_{\text {ave }}(\operatorname{Mo4}-\mathrm{O})=$ $1.979(2) \AA$ A , BVS(Mo4) $=6.02 ; \quad d_{\text {ave }}(\operatorname{Mo5}-\mathrm{O})=$ $1.972(2) \AA, B V S(M o 5)=6.05$.

Fig. 1. CAMERON (Watฝin, Prout \& Pearce, 1996) diagram of the $\left[\left(\mathrm{MoO}_{3}\right)_{5}\left\{\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{PO}_{3}\right\}_{2}\right]^{4-}$ cluster and accompanying species (50% probability displacement ellipsoids). H atoms have been omitted for clarity.

Both faces of the $\mathrm{Mo}_{5} \mathrm{O}_{21}$ five-unit ring are capped by $\mathrm{PC}_{2} \mathrm{H}_{5}$ entities, as $\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{PO}_{3}\right]^{2-}$ ethylphosphonate groups. For both distinct ethylphosphonate groups, one $\mathrm{P}-\mathrm{O}-\mathrm{Mo}$ bond and two $\mathrm{P}-\mathrm{O}-\left(\mathrm{Mo}, \mathrm{Mo}^{\prime}\right)$ links are formed, the latter O atoms forming part of the interoctahedral edges. The geometric parameters for the ethylphosphonate group are typical of results obtained from previous studies of the same entity (Stalick \& Quicksall, 1976). The O atoms associated with the cluster adopt various bonding geometries: $\mathrm{O}, \mathrm{O}, \mathrm{O} 9$, $\mathrm{O} 10, \mathrm{O} 13, \mathrm{O} 14, \mathrm{O} 16, \mathrm{O} 17, \mathrm{O} 20$ and O 21 are terminal O atoms attached only to molybdenum; $\mathrm{O} 2, \mathrm{O} 4, \mathrm{O}$, O 12 and O 19 form bicoordinate $\mathrm{Mo}-\mathrm{O}-\mathrm{Mo}^{\prime}$ bridges; O 11 and O 18 form bicoordinate $\mathrm{Mo}-\mathrm{O}-\mathrm{P}$ bonds; Ol , $\mathrm{O} 3, \mathrm{O} 7$ and O 21 form tricoordinate $\left(\mathrm{Mo}, \mathrm{Mo}^{\prime}\right)-\mathrm{O}-\mathrm{P}$ centers.

The overall formulation of the molybdenum oxide ethylphosphonate cluster is $\left[\left(\mathrm{MoO}_{3}\right)_{5}\left\{\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{PO}_{3}\right\}_{2}\right]^{4-}$ \{or $\left.\left[\mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{21}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right]^{4-}\right\}$, assuming the sole presence of $\mathrm{Mo}^{{ }^{\mathrm{V}}}$ which is consistent with the crystal color and BVS calculations. Charge compensation for the anionic cluster is provided by a pair of doubly protonated $\left[\mathrm{N}_{2} \mathrm{C}_{4} \mathrm{H}_{12}\right]^{2+}$ piperazinium cations. Both these species adopt typical chair geometries with normal NC and $\mathrm{C}-\mathrm{C}$ bond lengths and angles. All eight of the $\mathrm{N}-\mathrm{H}$ protons are involved in hydrogen-bonding links, either to O atoms in the $\left[\left(\mathrm{MoO}_{3}\right)_{5}\left\{\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{PO}_{3}\right\}_{2}\right]^{4-}$ cluster or to water molecules (non-cluster O atoms). There are two water molecules of crystallization (atoms O31 and O32). The Mo/P/O component of the $\left[\left(\mathrm{MoO}_{3}\right)_{5}\left\{\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{PO}_{3}\right\}_{2}\right]^{4-}$ species in this material is essentially identical with similar clusters studied earlier (Stalick \& Quicksall, 1976).

The unit-cell packing results in infinite layers of $\left[\left(\mathrm{MoO}_{3}\right)_{5}\left\{\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{PO}_{3}\right\}_{2}\right]^{4-}$ anions in the $a b$ plane. In the a direction, the $\mathrm{C}_{2} \mathrm{H}_{5}$ segments of the ethyl-
phosphonate groups pack together in a 'herringbone' configuration, interacting only through van der Waals forces. 'Channel-like' voids in the \mathbf{b} direction are occupied by piperazinium dications and water molecules.

Thermal gravimetric analysis (TGA) for thoroughly ground crystals of (I) (heated to 773 K in a dry O_{2} atmosphere) showed weight losses at $368-393 \mathrm{~K}$, a sharp loss at 523 K and a gradual loss from $563-$ 773 K . The post-TGA residue contains orthorhombic MoO_{3}. The overall weight loss of 26.3% corresponds well with complete nominal elimination of water, piperazinium cations and the $\mathrm{C}_{2} \mathrm{H}_{5}$ residues from the ethylphosphonate groups (calc. $\mathbf{2 6 . 3 \%}$). We assume that a second glassy $\mathrm{Mo} / \mathrm{P} / \mathrm{O}$ component is present in the post-TGA residue. The initial weight loss of 3.2% corresponded well with loss of the water of crystallization from (I) (calc. 3.2\%). A new sample was heated to 423 K and then cooled to ambient temperature in a wet O_{2} atmosphere. This TGA showed a singlestep weight loss (total 3.2%) on heating and a twostep weight gain on cooling to return to the starting weight. This post-TGA residue (powder X-ray diffraction) was essentially identical to the initial sample (some loss of crystallinity observed), indicating that (I) reversibly dehydrates/rehydrates, presumably without loss of structure.

The IR spectrum of (I) shows typical signals for water molecules, protonated secondary amines and penta-molybdo-dialkylphosphonate clusters, as assigned previously (Kwak, Pope \& Scully, 1975).

Experimental

The title compound, (I), was hydrothermally prepared from a mixture of 0.1795 g (2.084 mmol) piperazine, 0.6 g $(4.168 \mathrm{mmol} \mathrm{Mo}) \mathrm{MoO}_{3}$ and $0.468 \mathrm{~g}(4.168 \mathrm{mmol} \mathrm{P}) 98 \%$ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{PO}_{2} \mathrm{H}_{2}$ in 8 ml deionized $\mathrm{H}_{2} \mathrm{O}$ (piperazine: Mo : P ratio 1:2:2). The reactants were sealed in a 23 ml teflon-lined Parr reaction vessel and heated to 408 K for 5 d . After slow cooling to ambient temperature over 24 h , the bomb was opened and the air-stable product recovered by vacuum filtration with water in 92% yield (based on Mo).

Crystal data

$\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{Mos}_{5} \mathrm{O}_{15-}\right.$
$\left.\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{3} \mathrm{P}\right)_{2}\right] .2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1148.09$
Monoclinic
P_{1} / a
$a=14.935$ (4) \AA
$b=12.158$ (6) \AA
$c=17.499$ (9) \AA
$\beta=96.30(3)^{\circ}$
$V=3158$ (3) \AA^{3}
$Z=4$
$D_{x}=2.41 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=10.5-17.5^{\circ}$
$\mu=2.13 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Irregular lump
$0.4 \times 0.3 \times 0.3 \mathrm{~mm}$
Colorless

Data collection

Enraf-Nonius CAD-4 diffractometer
$2 \theta / \omega$ scans
Absorption correction: ψ scans (North, Phillips \& Mathews, 1968) $T_{\text {min }}=0.493, T_{\text {max }}=0.528$
4319 measured reflections 3993 independent reflections

Refinement

Refinement on F
$R=0.024$
$w R=0.022$
$S=2.90$
3993 reflections
417 parameters
H atoms: see below
Weighting scheme based on measured e.s.d.'s
$(\Delta / \sigma)_{\max }=0.034$

3993 reflections with $F>0$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=22.5^{\circ}$
$h=0 \rightarrow 16$
$k=0 \rightarrow 13$
$l=-18 \rightarrow 18$
3 standard reflections frequency: 167 min intensity decay: none
$\Delta \rho_{\text {max }}=0.48 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.43 \mathrm{e} \AA^{-3}$
Extinction correction: Larson (1970)
Extinction coefficient: 103 (2)
Scattering factors from International Tables for X-ray Crystallography (Vol. IV)

Table 1. Selected geometric parameters $\left(\AA{ }^{\circ},^{\circ}\right)$

Mol-Ol	2.352 (3)	Mo4-016	1.707 (3)
$\mathrm{Mol-O2}$	1.937 (3)	Mo4-O17	1.708 (3)
Mol-O3	2.307 (3)	Mo4-O18	2.224 (3)
Mol-O4	1.905 (3)	Mo4-O19	1.950 (3)
$\mathrm{Mol}-\mathrm{O5}$	1.703 (3)	Mo5-Ol	2.347 (3)
Mol-O6	1.708 (3)	Mo5-02	1.943 (3)
Mo2-03	2.405 (3)	Mo5-O15	2.197 (3)
Mo2-04	1.903 (3)	Mo5-O19	1.937 (3)
Mo2-07	2.211 (3)	Mo5--020	1.706 (3)
Mo2-08	1.973 (3)	Mo5-021	1.701 (3)
Mo2-09	1.698 (3)	$\mathrm{Pl}-\mathrm{O} 3$	1.535 (3)
Mo2-O10	1.708 (3)	$\mathrm{Pl}-\mathrm{Oll}$	1.509 (3)
Mo3--07	2.367 (3)	$\mathrm{Pl}-\mathrm{O} 15$	1.556 (3)
Mo3-08	1.933 (3)	$\mathrm{Pl}-\mathrm{Cl}$	1.799 (4)
Mo3-O11	2.223 (3)	$\mathrm{P} 2-\mathrm{O} 1$	1.544 (3)
Mo3-O12	1.910 (3)	P2-07	1.549 (3)
Mo3-O13	1.703 (3)	P2-O18	1.508 (3)
Mo3-014	1.725 (3)	P2-C3	1.786 (4)
Mo4-O12	1.907 (3)	$\mathrm{C} 1-\mathrm{C} 2$	1.519 (6)
Mo4-O15	2.376 (3)	C3-C4	1.521 (6)

H atoms were located geometrically ($\mathrm{N}-\mathrm{H}$ and $\mathrm{C}-\mathrm{H}=$ $0.95 \AA$) and from difference maps for the O31 atom. The H atoms of the O 32 water molecule were not located.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: RC85 (Baird, 1985). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: CRYSTALS (Watkin, Prout, Carruthers \& Betteridge, 1996). Molecular graphics: CAMERON (Watkin, Prout \& Pearce, 1996). Software used to prepare material for publication: CRYSTALS.

The authors thank the National Science Foundation for partial funding.

[^0]
References

Baird, P. D. (1985). RC85. Data Reduction Program. Chemical Crystallography Laboratory, University of Oxford, England.
Brese, N. E. \& O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Gérand, B., Nowogrocki, J., Guenot, J. \& Figlarz, M. (1979). J. Solid State Chem. 29, 429-434.
Harrison, W. T. A., Dussack, L. L. \& Jacobson, A. J. (1995). Inorg. Chem. 34, 4774-4779.
Kortz. U. \& Pope, M. T. (1995). Inorg. Chem. 34, 2160-2163.
Kwak, W., Pope, M. T. \& Scully, T. F. (1975). J. Am. Chem. Soc. 97, 5735-5738.
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Stalick, J. \& Quicksall, C. O. (1976). Inorg. Chem. 15. 1577-1584.
Watkin, D. J.. Prout. C. K.. Carruthers. R. J. \& Betteridge, P. (1996). CRYSTALS. Issue 10. Chemical Crystallography Laboratory, Oxford, England.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

Acta Cryst. (1997). C53, 202-204

Dichloro (η^{5}-cyclopentadienyl)(phenylimido)vanadium(V)

Michael C. W. Chan, \dagger Jacqueline M. Cole, \ddagger
Vernon C. Gibson§ and Judith A. K. Howard
Department of Chemistry, Science Laboratories, University of Durham, South Road, Durham DH1 3LE, England. E-mail: cole@ill.fr
(Received 4 April 1996: accepted 15 October 1996)

Abstract

The title compound, $\left[\mathrm{VCl}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\right)\right.$], contains vanadium in a tetrahedral coordination geometry, with the cyclopentadienyl (Cp) ligand occupying one of the four sites and showing an allyl-ene distortion. The VN - C angle is $169.1(4)^{\circ}$. The crystal packing involves $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions, with $\mathrm{H} \cdots \mathrm{Cl}$ distances in the range 2.87 (5)-2.89 (4) \AA.

Comment

The chemistry of the half-sandwich vanadium imido system has recently been investigated due to the isolobal
\dagger Present address: Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong.
\ddagger Present address: Institut Laue Langevin, BP 156, 38042 Grenoble CEDEX 9, France.
§ Present address: Department of Chemistry, Imperial College, London SW7 2AY, England.

[^0]: Lists of structure factors, anisotropic displacement parameters, atomic coordinates and complete geometry have been deposited with the IUCr (Reference: TAl123). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH 12 HU , England.

